Constructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures

نویسندگان

  • Maocai Wang
  • Guangming Dai
  • Kim-Kwang Raymond Choo
  • Prem Prakash Jayaraman
  • Rajiv Ranjan
چکیده

Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user's public key based on the user's identity. However, computational requirements complicate the practical application of Identity-based cryptography. In order to improve the efficiency of identity-based cryptography, this paper presents an effective method to construct pairing-friendly elliptic curves with low hamming weight 4 under embedding degree 1. Based on the analysis of the Complex Multiplication(CM) method, the soundness of our method to calculate the characteristic of the finite field is proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to demonstrate the utility of our approach. Finally, the evaluation also indicates that it is more efficient to compute Tate pairing with our curves, than that of Bertoni et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairing-friendly Elliptic Curves of Embedding Degree 1 and Applications to Cryptography

Recently, Wang et al. [1] proposed a new method for constructing pairingfriendly elliptic curves of embedding degree 1. Authors claim that this method significantly improves the efficiency of generating elliptic curves. In this paper, we give the arithmetic of pairing-friendly elliptic curves of embedding degree 1. We prove that conventional classification of pairings into Type 1, 2, 3 and 4 is...

متن کامل

Ja n 20 06 Constructing Pairing - Friendly Elliptic Curves with Embedding Degree

We present a general framework for constructing families of elliptic curves of prime order with prescribed embedding degree. We demonstrate this method by constructing curves with embedding degree k = 10, which solves an open problem posed by Boneh, Lynn, and Shacham [6]. We show that our framework incorporates existing constructions for k = 3, 4, 6, and 12, and we give evidence that the method...

متن کامل

Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10

We present a general framework for constructing families of elliptic curves of prime order with prescribed embedding degree. We demonstrate this method by constructing curves with embedding degree k = 10, which solves an open problem posed by Boneh, Lynn, and Shacham [6]. We show that our framework incorporates existing constructions for k = 3, 4, 6, and 12, and we give evidence that the method...

متن کامل

Constructing pairing-friendly hyperelliptic curves using Weil restriction

A pairing-friendly curve is a curve over a finite field whose Jacobian has small embedding degree with respect to a large prime-order subgroup. In this paper we construct pairing-friendly genus 2 curves over finite fields Fq whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over Fq that become ...

متن کامل

Constructing Families of Pairing-Friendly Elliptic Curves

We present a general method for constructing families of elliptic curves with prescribed embedding degree and prime order. We demonstrate this method by constructing curves of embedding degree k = 10, a value which has not previously appeared in the literature, and we show that our method applies to existing constructions for k = 3, 4, 6, and 12. We give evidence that our method is unlikely to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016